5,179 research outputs found

    5-Acetyl[2.2]paracyclophane

    Get PDF
    The title compound 5-acetyltricyclo[8.2.2.24,7]hexa-deca-4,6,10,12,13,15-hexaene, C18H18O,is the first example of a mono-π-substituted [2.2]paracyclophane to be structurally characterized. The average bending angles are α = 13.2 and β = 9.9°. The distance between the \u27bottoms\u27 of the practically parallel boat-like benzene nuclei is 3.098(2) Å. The π conjugation between the acetyl group and the substituted benzene cycle is negligible (rotation angle ca 45°) because of steric hindrance

    Nonlinear ac stationary response and dynamic magnetic hysteresis of quantum uniaxial superparamagnets

    Full text link
    The nonlinear ac stationary response of uniaxial paramagnets and superparamagnets - nanoscale solids or clasters with spin number S ~ 10^0 - 10^4 - in superimposed uniform ac and dc bias magnetic fields of arbitrary strength, each applied along the easy axis of magnetization, is determined by solving the evolution equation for the reduced density matrix represented as a finite set of three-term differential-recurrence relations for its diagonal matrix elements. The various harmonic components of the magnetization, dynamic magnetic hysteresis loops, etc. are then evaluated via matrix continued fractions indicating a pronounced dependence of the nonlinear response on S arising from the quantum spin dynamics. In the linear response approximation, the results concur with existing solutions.Comment: 28 pages, 10 figures, 33 refererence

    Orbital roulette: a new method of gravity estimation from observed motions

    Full text link
    The traditional way of estimating the gravitational field from observed motions of test objects is based on the virial relation between their kinetic and potential energy. We find a more efficient method. It is based on the natural presumption that the objects are observed at a random moment of time and therefore have random orbital time phases. The proposed estimator, which we call "orbital roulette", checks the randomness of the phases. The method has the following advantages: (1) It estimates accurately Keplerian (point-mass) potentials as well as non-Keplerian potentials where the unknown gravitating mass is distributed in space. (2) It is a complete statistical estimator: it checks a trial potential and accepts it or rules it out with a certain significance level; the best-fit measurement is thus supplemented with error bars at any confidence level. (3) It needs no a priori assumptions about the distribution of orbital parameters of the test bodies. We test our estimator with Monte-Carlo-generated motions and demonstrate its efficiency. Useful applications include the Galactic Center, dark-matter halo of the Galaxy, and clusters of stars or galaxies.Comment: 30 pages, accepted to Ap

    The jet-disk symbiosis without maximal jets: 1-D hydrodynamical jets revisited

    Get PDF
    In this work we discuss the recent criticism by Zdziarski of the maximal jet model derived in Falcke & Biermann (1995). We agree with Zdziarski that in general a jet's internal energy is not bounded by its rest-mass energy density. We describe the effects of the mistake on conclusions that have been made using the maximal jet model and show when a maximal jet is an appropriate assumption. The maximal jet model was used to derive a 1-D hydrodynamical model of jets in agnjet, a model that does multiwavelength fitting of quiescent/hard state X-ray binaries and low-luminosity active galactic nuclei. We correct algebraic mistakes made in the derivation of the 1-D Euler equation and relax the maximal jet assumption. We show that the corrections cause minor differences as long as the jet has a small opening angle and a small terminal Lorentz factor. We find that the major conclusion from the maximal jet model, the jet-disk symbiosis, can be generally applied to astrophysical jets. We also show that isothermal jets are required to match the flat radio spectra seen in low-luminosity X-ray binaries and active galactic nuclei, in agreement with other works.Comment: 7 pages, accepted by A&

    Electron-nuclear correlations for photo-induced dynamics in molecular dimers

    Full text link
    Ultrafast photoinduced dynamics of electronic excitation in molecular dimers is drastically affected by the dynamic reorganization of inter- and intra- molecular nuclear configuration modeled by a quantized nuclear degree of freedom [Cina et. al, J. Chem Phys. {118}, 46 (2003)]. The dynamics of the electronic population and nuclear coherence is analyzed by solving the chain of coupled differential equations for %mean coordinate, population inversion, electron-vibrational correlation, etc. [Prezhdo, Pereverzev, J. Chem. Phys. {113} 6557 (2000)]. Intriguing results are obtained in the approximation of a small change of the nuclear equilibrium upon photoexcitation. In the limiting case of resonance between the electronic energy gap and the frequency of the nuclear mode these results are justified by comparison to the exactly solvable Jaynes-Cummings model. It is found that the photoinduced processes in the model dimer are arranged according to their time scales: (i) fast scale of nuclear motion, (ii) intermediate scale of dynamical redistribution of electronic population between excited states as well as growth and dynamics of electron-nuclear correlation, (iii) slow scale of electronic population approach to the quasi-equilibrium distribution, decay of electron-nuclear correlation, and decrease of the amplitude of mean coordinate oscillation. The latter processes are accompanied by a noticeable growth of the nuclear coordinate dispersion associated with the overall nuclear wavepacket width. The demonstrated quantum relaxation features of the photoinduced vibronic dynamics in molecular dimers are obtained by a simple method, applicable to systems with many degrees of freedom

    From Prestellar to Protostellar Cores II. Time Dependence and Deuterium Fractionation

    Full text link
    We investigate the molecular evolution and D/H abundance ratios that develop as star formation proceeds from a dense-cloud core to a protostellar core, by solving a gas-grain reaction network applied to a 1-D radiative hydrodynamic model with infalling fluid parcels. Spatial distributions of gas and ice-mantle species are calculated at the first-core stage, and at times after the birth of a protostar. Gas-phase methanol and methane are more abundant than CO at radii r≲100r\lesssim 100 AU in the first-core stage, but gradually decrease with time, while abundances of larger organic species increase. The warm-up phase, when complex organic molecules are efficiently formed, is longer-lived for those fluid parcels in-falling at later stages. The formation of unsaturated carbon chains (warm carbon-chain chemistry) is also more effective in later stages; C+^+, which reacts with CH4_4 to form carbon chains, increases in abundance as the envelope density decreases. The large organic molecules and carbon chains are strongly deuterated, mainly due to high D/H ratios in the parent molecules, determined in the cold phase. We also extend our model to simulate simply the chemistry in circumstellar disks, by suspending the 1-D infall of a fluid parcel at constant disk radii. The species CH3_3OCH3_3 and HCOOCH3_3 increase in abundance in 104−10510^4-10^5 yr at the fixed warm temperature; both also have high D/H ratios.Comment: accepted to ApJ. 55 pages, 7 figures, 3 table
    • …
    corecore